Compositum of Galois Extensions of Hilbertian Fields

نویسندگان

  • Dan Haran
  • Moshe Jarden
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Hilbertian Fields *

This paper is devoted to some variants of the Hilbert specialization property. For example, the RG-hilbertian property (for a field K), which arose in connection with the Inverse Galois Problem, requires that the specialization property holds solely for extensions of K(T ) that are Galois and regular over K. We show that fields inductively obtained from a real hilbertian field by adjoining real...

متن کامل

Galois Extensions of Hilbertian Fields

We prove the following result: Theorem. Let K be a countable Hilbertian field, S a finite set of local primes of K, and e ≥ 0 an integer. Then, for almost all ∈ G(K)e, the field Ks[ ] ∩Ktot,S is PSC. Here a local prime is an equivalent class p of absolute values of K whose completion is a local field, K̂p. Then Kp = Ks ∩ K̂p and Ktot,S = T p∈S T σ∈G(K) K σ p . G(K) stands for the absolute Galois ...

متن کامل

The Growth of the Rank of Abelian Varieties upon Extensions

We study the growth of the rank of elliptic curves and, more generally, Abelian varieties upon extensions of number fields. First, we show that if L/K is a finite Galois extension of number fields such that Gal(L/K) does not have an index 2 subgroup and A/K is an Abelian variety, then rkA(L)− rkA(K) can never be 1. We obtain more precise results when Gal(L/K) is of odd order, alternating, SL2(F...

متن کامل

The Embedding Problem over a Hilbertian Pac-field

We show that the absolute Galois group of a countable Hilbertian P(seudo)A(lgebraically)C(losed) field of characteristic 0 is a free profinite group of countably infinite rank (Theorem A). As a consequence, G(Q̄/Q) is the extension of groups with a fairly simple structure (e.g., ∏∞ n=2 Sn) by a countably free group. In addition, we characterize those PAC fields over which every finite group is a...

متن کامل

Fields of definition of abelian varieties with real multiplication

Let K be a field, and let K be a separable closure of K. Let C be an elliptic curve over K. For each g in the Galois group G := Gal(K/K), let C be the elliptic curve obtained by conjugating C by g. One says that C is an elliptic K-curve if all the elliptic curves C are K-isogenous to C. Recall that a subfield L of K is said to be a (2, . . . , 2)-extension of K if L is a compositum of a finite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007